The Degree of Approximation by Polynomials Increasing to the Right of the Interval

R. K. BEATSON

Department of Mathematics, University of Texas, Austin, Texas 78712

Communicated by Oved Shisha

Received January 3, 1978

INTRODUCTION

Jackson Type Theorems are obtained for approximation of $f \in C^k[-1, 1]$ by polynomials $p_n \in \pi_n$ which are increasing on $[1, \infty)$. The estimates obtained depend both on $n^{-k}\omega(f^{(k)}, n^{-1})$ and on the derivatives of f at x = 1. For example it is shown that for each $f \in C^2[-1, 1]$ the degree of approximation by polynomials $p_n \in \pi_n$ increasing to the right of x = 1, $E_n^*(f)$, satisfies

$$E_n^*(f) \leq D_2 n^{-2} \omega(f^{(2)}, n^{-1}) + \max\left(0, \frac{-f'(1)}{n^2}, \frac{-3f''(1)}{n^2(n^2-1)}\right).$$

This estimate of $E_n^*(f)$ is of the best possible order in that the following negative result holds: If f'(1) < 0 then for each $\alpha > 0$,

$$\overline{\lim_{n\to\infty}} n^{2+\alpha} E_n^*(f) = \infty.$$

The motivation for the present work was the method of proof used in recent studies of uniform rational approximation to reciprocals of entire functions on $[0, \infty)$ (see, e.g., Meinardus and Varga [5]). Indeed that method of proof may be combined with the polynomial preserving one to one correspondence between C[0, r] and C[-1, 1] given by

$$f(x) = g(y)$$
 where $x \in [-1, 1]$ and $x = (2y - r)/r$;

and Corollary 1 of this paper; to yield results concerning uniform rational approximation on $[0, \infty)$. Details appear in the preprint Beatson [1].

Results related to those of the present paper appear in Ling, Roulier, and Varga [3].

R. K. BEATSON

THE RESULTS

Notation. Throughout C_1 , C_2 , C_3 ,... denote positive constants not depending on n or f, but possibly depending on k.

Define

$$E_n^*(f) = \inf \{ \| f - p \| : p \in \pi_n, p'(x) \ge 0 \text{ on } [1, +\infty) \}.$$

where the norm $\|\cdot\|$ is the uniform norm on [-1, 1] and π_n is the space of algebraic polynomials of degree not exceeding n.

LEMMA 1. There exists a constant M such that for each $f \in C[-1, 1]$ and n = 1, 2, 3, ... there exists $p_n \in \pi_n$ with

$$p_n(1) = f(1);$$
$$p'_n(x) \ge 0, \forall x \ge 1;$$

and

$$||f-p_n|| \leq M\omega(f, n^{-1}).$$

Remark. Hence $E_n^*(f) \leq M\omega(f, n^{-1})$.

Proof. Fix f and n. Define f outside [-1, 1] by

$$f(x) = \begin{vmatrix} f(1), & \text{if } x \ge 1\\ f(-1), & \text{if } x \le -1 \end{vmatrix}$$

Let

$$\phi(x) = (2\delta)^{-1} \int_{-\delta}^{\delta} f(x+t) dt \text{ with } \delta = n^{-1}.$$

As is well known (see for example Cheney [2, pp. 143–144]), ϕ is continuously differentiable with

$$\|\phi'\| \leq n\omega(f, n^{-1}), \quad \omega(\phi', n^{-1}) \leq n\omega(f, n^{-1}), \quad \text{and} \quad \|f - \phi\| \leq \omega(f, n^{-1}).$$

Using a theorem of Trigub [9], see also Teljakovskii [8]¹ and Malozemov [4], there exists a polynomial $q_n \in \pi_n$ with

$$\|\phi - q_n\| \leqslant C_1 n^{-1} \omega(\phi', n^{-1}) \text{ and } \|\phi' - q_n'\| \leqslant C_2 \omega(\phi', n^{-1}).$$

¹ [8] erroneously states the simultaneous approximation theorem as holding for all n. Nontrivial simultaneous approximation to f and its first k derivatives is possible only by algebraic polynomials of degree $n \ge k$. Hence

$$\|f-q_n\| \leqslant C_3\omega(f, n^{-1}) \text{ and } \|q_n'\| \leqslant C_4n\omega(f, n^{-1}).$$

We perturb q_n in order to obtain an approximation increasing to the right of x = 1. Denote by T_m the *m*-th Chebyshev polynomial of the first kind. It is well known (see e.g. Rogosinski [7], Rivlin [6, pp. 92–93]) that for $n = 0, 1, 2, ...; r_n \in \pi_n$ and $||r_n|| \leq 1$ implies $|r_n^{(j)}(x)| \leq T_n^{(j)}(x)$ for all $x \geq 1$, j = 0, 1, ..., n. The inequality for j = 0 shows that if $h_n(x)$ is any indefinite integral of $||q'_n|| T_{n-1}$ then

$$h'_n(x) + q'_n(x) \ge 0, \forall x \ge 1.$$

Use the formula

$$I(T_m, x) = \begin{vmatrix} T_1(x) & , m = 0, \\ T_2(x)/4 & , m = 1, \\ \frac{T_{m+1}(x)}{2(m+1)} - \frac{T_{m-1}(x)}{2(m-1)}, m \ge 2; \end{vmatrix}$$

obtained from the identity $2 \cos n\theta \sin \theta = \sin(n+1)\theta - \sin(n-1)\theta$, to specify a particular indefinite integral operator, operating on the T_m , with the desirable property that

$$||I(T_m)|| \leq C_5(m+1)^{-1}, \quad m=0, 1, 2, \dots$$

Thus

$$y_n(x) = q_n(x) + ||q'_n|| I(T_{n-1}, x),$$

is an algebraic polynomial of degree not exceeding n, increasing to the right of x = 1, with

$$||f - y_n|| \leq ||f - q_n|| + ||q'_n||||I(T_{n-1})|| \leq C_6 \omega(f, n^{-1}).$$

Addition of $[f(1) - y_n(1)]$ to y_n produces a polynomial $p_n \in \pi_n$ with: $p'_n(x) \ge 0$, $\forall x \ge 1$; $p_n(1) = f(1)$; and $||f - p_n|| \le 2C_6 \omega(f, n^{-1})$. This concludes the proof.

THEOREM 1. For each $k = 1, 2, 3, ..., there exists a constant <math>D_k$, such that for each $f \in C^k[-1, 1]$ and n > k there exists a polynomial $p_n \in \pi_n$ with

$$||f - p_n|| \leq D_k n^{-k} \omega(f^{(k)}, n^{-1});$$

and

$$p'_n(x) \ge t'(x), \forall x \ge 1,$$

where t(x) is the Taylor polynomial

$$t(x) = \sum_{j=0}^{k} \left[f^{(j)}(1)(x-1)^{j}/j! \right]$$

Proof. Given n (>k), let $p_{n,k}^{(k)}$ be the polynomial of degree n - k approximating $f^{(k)}$ whose existence is guaranteed by Lemma 1. Define a polynomial $p_{n,k}$ in π_n by

$$p_{n,k}(x) = \sum_{j=0}^{k-1} \left[f^{(j)}(1)(x-1)^j/j! \right] + \int_1^x \int_1^{t_k} \cdots \int_1^{t_2} p_{n,k}^{(k)}(t_1) dt_1 \cdots dt_k ;$$

where for k = 1 the last term is understood to be $\int_{1}^{x} p_{n,1}^{(1)}(t_1) dt_1$. Then

$$p_{n,k}^{(j)}(1) = f^{(j)}(1), \quad j = 0, ..., k;$$
$$p_{n,k}^{(k+1)}(x) \ge 0, \qquad \forall x \ge 1;$$

and

$$||f^{(k)} - p^{(k)}_{n,k}|| \leq M\omega(f^{(k)}, (n-k)^{-1}) \leq C_7 \omega(f^{(k)}, n^{-1}).$$

Now consider $(f - p_{n,k})$. This function has

 $(f - p_{n,k})^{(j)}(1) = 0, \quad j = 0, ..., k; \text{ and } ||(f - p_{n,k})^{(k)}|| \leq C_7 \omega(f^{(k)}, n^{-1}).$

By another application of Lemma 1, this time to $[f^{(k-1)} - p_{n,k}^{(k-1)}]$, followed by k - 1 indefinite integrations we can find a polynomial $p_{n,k-1}$ in π_n such that

$$p_{n,k-1}^{(j)}(1) = 0, \qquad j = 0, ..., k - 1;$$
$$p_{n,k-1}^{(k)}(x) \ge 0, \qquad \forall x \ge 1;$$

and

$$\| [f^{(k-1)} - p^{(k-1)}_{n,k}] - p^{(k-1)}_{n,k-1} \| \leq C_1 n^{-1} \omega(f^{(k)}, n^{-1}).$$

Continue this process defining for i = 2, ..., k in that order, a polynomial $p_{n,k-i}$ of degree not exceeding n such that

$$p_{n,k-i}^{(j)}(1) = 0, \qquad j = 0, ..., k - i;$$

$$p_{n,k-i}^{(k-i+1)}(x) \ge 0, \qquad \forall x \ge 1;$$

$$\left\| \left[f^{(k-i)} - \sum_{j=0}^{i-1} p_{n,k-j}^{(k-i)} \right] - p_{n,k-i}^{(k-i)} \right\| \le C_{7+i} n^{-i} \omega(f^{(k)}, n^{-1}).$$

Then the polynomial

$$p_n = \sum_{j=0}^k p_{n,j}(x)$$
 (1)

belongs to π_n and

$$||f - p_n|| \leq C_{7+k} n^{-k} \omega(f^{(k)}, n^{-1}).$$

It remains to show that the derivative of p_n satisfies the stated condition to the right of 1. Recall that

$$p_{n,k}^{(j)}(1) = f^{(j)}(1), j = 0, ..., k; \text{ and } p_{n,k}^{(k+1)}(x) \ge 0, \quad \forall x \ge 1.$$

Hence

$$[p_{n,k}-t]^{(j)}(1)=0, \quad j=0,...,k;$$

and

$$[p_{n,k} - t]^{(k+1)}(x) = p_{n,k}^{(k+1)}(x) \ge 0, \quad \forall x \ge 1;$$

implying

$$p_{n,k}^{(j)}(x) \ge t^{(j)}(x), \quad j = 0, 1, ..., k+1, \quad \forall x \ge 1.$$
 (2)

Similarly for i = 0, ..., k - 1,

$$p_{n,i}^{(j)}(1) = 0, \quad j = 0,...,i; \text{ and } p_{n,i}^{(i+1)}(x) \ge 0; \quad \forall x \ge 1;$$

implies

$$p'_{n,i}(x) \ge 0, \quad \forall x \ge 1.$$
 (3)

(1), (2) and (3) together imply

$$p'_n(x) = \sum_{i=0}^k p'_{n,i}(x) \ge t'(x), \quad \forall x \ge 1,$$

COROLLARY 1. Let D_k and t(x) = t(f, x) be defined as in Theorem 1. Given $f \in C^k[-1, 1]$ and n > k define $\epsilon_n(f)$ as the smallest non-negative number such that

$$(t + \epsilon_n(f) T_n)'(x) \ge 0, \quad \forall x \ge 1.$$

Then

(a)
$$E_n^*(f) \leq D_k n^{-k} \omega(f^{(k)}, n^{-1}) + \epsilon_n(f).$$

(b) $0 \leq \epsilon_n(f) \leq \max_{j=1,...,k} \max[0, -f^{(j)}(1)/d_{n,j}]$ where for $j = 1,..., n_j$
 $d_{n,j} = |T_n^{(j)}(1)| = \frac{n^2 \cdot (n^2 - 1) \cdots (n^2 - (j - 1)^2)}{1 \cdot 3 \cdots (2j - 1)}.$

(c) If for some $\theta > 0$, $t'(x) \ge 0$ for all x in the interval $(1, \cosh \theta)$ then in addition

$$\epsilon_n(f) \leqslant \frac{k}{2n} \frac{\exp(k\theta)}{\sinh(n\theta)} \parallel t \parallel \leqslant M(\theta, f, k)(e^{-\theta})^n, \quad \forall n > k.$$

Proof of (a). Let $p_n(x)$ be the polynomial approximation to f whose existence is guaranteed by Theorem 1. Then by choice of $\epsilon_n(f)$ the polynomial $p_n(x) + \epsilon_n(f) T_n(x)$ provides the estimate (a).

Proof of (b). Define $\delta_n(f) = \max_{j=1,...,k} \max[0, -f^{(j)}(1)/d_{n,j}]$. Then for all n > k

$$t^{(k+1)}(x) + \delta_n(f) T_n^{(k+1)}(x) = \delta_n(f) T_n^{(k+1)}(x) \ge 0, \quad \forall x \ge 1,$$

and

$$t^{(j)}(1) + \delta_n(f) T_n^{(j)}(1) \ge 0, \quad \forall j = 1, ..., k.$$

It follows that

$$[t + \delta_n(f) T_n]'(x) \ge 0, \qquad \forall x \ge 1,$$

and hence that $\epsilon_n(f) \leq \delta_n(f)$.

Proof of (c). For x > 1, $m = 1, 2, 3, ..., T_m(x) = \cosh m\phi$ and $T'_m(x) = m \sinh(m\phi)/\sinh \phi$, where ϕ is the positive solution of $x = \cosh \phi$. Hence

$$\frac{T'_k(x)}{T'_n(x)} = \frac{k \sinh(k\phi)}{n \sinh(n\phi)} \leqslant \frac{k \exp(k\phi)}{2n \sinh(n\phi)}, \quad \forall \phi > 0.$$

Also

$$\frac{d}{d\phi} \left[\frac{\exp(k\phi)}{\sinh(n\phi)} \right] = \frac{\exp(k\phi)[k\sinh(n\phi) - n\cosh(n\phi)]}{[\sinh(n\phi)]^2} < 0,$$

156

for all $\phi > 0$ and n > k, so that

$$\max_{x \ge \cosh \theta} \frac{T'_k(x)}{T'_n(x)} \leqslant \frac{k}{2n} \cdot \frac{\exp(k\theta)}{\sinh(n\theta)}, \quad \forall n > k.$$
(4)

(4) and the extremal property of the first derivative of a Chebyshev polynomial (see previous discussion, Rivlin [6, pp. 92–93], or Rogosinski [7]) imply

$$\max_{x \ge \cosh \theta} \frac{|t'(x)|}{T'_n(x)} \le ||t|| \cdot \max_{x \ge \cosh \theta} \frac{T'_k(x)}{T'_n(x)} \le ||t|| \cdot \frac{k}{2n} \cdot \frac{\exp(k\theta)}{\sinh(n\theta)}.$$
 (5)

(5) and the hypothesis that $t'(x) \ge 0$ for all x in the interval $(1, \cosh \theta)$, imply

$$t'(x) + ||t|| \frac{k}{2n} \frac{\exp(k\theta)}{\sinh(n\theta)} \cdot T'_n(x) \ge 0, \qquad x \ge 1.$$

i.e.,

$$\epsilon_n(f) \leq ||t|| \frac{k}{2n} \frac{\exp(k\theta)}{\sinh(n\theta)}.$$

In the particular case of functions $f \in C^2[-1, 1]$ part (b) of Corollary 1 reduces to the estimate

$$E_n^*(f) \leq D_2 n^{-2} \omega(f^{(2)}, n^{-1}) + \max\left(0, \frac{-f'(1)}{n^2}, \frac{-3f''(1)}{n^2(n^2-1)}\right).$$

This estimate of $E_n^*(f)$ is of the best possible order in that the following negative result holds:

If
$$f'(1) < 0$$
 then for each $\alpha > 0$, $\overline{\lim_{n \to \infty}} n^{2+\alpha} E_n^*(f) = \infty$.

The negative result is a trivial corollary to the following lemma

LEMMA 2. Let f be a function defined on [-1, 1], $1 > \alpha > 0$, C > 0, and $\{p_n \in \pi_n\}_{n=1}^{\infty}$ be a sequence of polynomials with $||f - p_n|| \leq Cn^{-2-\alpha}$, n = 1, 2, 3, Then $f \in C^1[-1, 1]$ and $||f' - p'_n|| \leq DCn^{-\alpha}$, n = 1, 2, 3, ..., where D depends only on α .

Proof. The proof is via Bernstein's well known argument. Let $d(n) = Cn^{-2-\alpha}$. The Markov inequality and the Weierstrass M test imply the series $\sum_{k=0}^{\infty} (p'_{n2^{k+1}} - p'_{n2^k})$ converges uniformly having norm not exceeding

$$2\sum_{k=0}^{\infty} \left[(n2^{k+1})^2 d(n2^k) \right] = n^{-\alpha} \left(8c \sum_{k=0}^{\infty} r^k \right) \text{ with } r = (1/2)^{\alpha}.$$

Hence well known theorems about the uniform convergence of series imply f' exists and that $[f' - p'_n] = \sum_{k=0}^{\infty} (p'_{n2^{k+1}} - p'_{n2^k})$. This completes the proof.

R. K. BEATSON

References

- 1. R. K. BEATSON, Degree of approximation of differentiable functions by reciprocals of polynomials on $[0, \infty)$, J. Approximation Theory, in press.
- 2. E. W. CHENEY, "Introduction to Approximation Theory," McGraw-Hill, New York, 1966.
- 3. W. H. LING, J. A. ROULIER, AND R. S. VARGA, On approximation by polynomials increasing to the right of the interval, J. Approximation Theory 14 (1975), 285-295.
- V. N. MALOZEMOV, Joint approximation of a function and its derivatives by algebraic polynomials, *Dokl. Akad. Nauk SSSR* 170 (1966), 773-775; also *Soviet Math. Dokl.* 7, No. 5 (1966), 1274-1275.
- 5. G. MEINARDUS AND R. S. VARGA, Chebyshev rational approximations to certain entire functions in [0, ∞), J. Approximation Theory 3 (1970), 300-309.
- 6. T. J. RIVLIN, "The Chebyshev Polynomials," Wiley, New York, 1974.
- 7. W. W. ROGOSINSKI, Some elementary inequalities for polynomials, Math. Gaz. 39 (1955), 7-12.
- S. A. TELJAKOVSKII, Two theorems on the approximation by algebraic polynomials, Mat Sb. (112) 70 (1966), 252-265; also Amer. Math. Soc. Transl. (2) 77 (1968), 163-176.
- 9. R. M. TRIGUB, Approximation of functions by polynomials with integral coefficients, *Izv. Akad. Nauk. SSSR Ser. Mat.* 26 (1962), 261–280.